
A Teaching Experience on Software Reengineering

Ricardo Pérez-Castillo, Ignacio García-Rodríguez de Guzmán, Felix García and Mario Piattini

Alarcos Research Group, University of Castilla-La Mancha

Paseo de la Universidad 4 13071, Ciudad Real, Spain

{ricardo.pdelcastillo, ignacio.grodriguez, felix.garcia, mario.piattini}@uclm.es

Abstract—Software maintenance is recognized as an important

knowledge area within the most common international curricula

in software engineering. Despite this fact, and its importance in

the industry, software maintenance and supporting techniques

such as reengineering are hardly ever taught in practical lessons.

This paper presents a reengineering teaching experience

conducted during two last years in lab sessions by using reverse

engineering and code generation tools. The experience was

carried out by merging traditional methods (such as teaching

lessons) with a practical exercise in laboratory. The teaching-

learning process was qualitative- and quantitatively assessed by

comparing results between an initial and final evaluation, as well

as between the experiences conducted during two last years with

different syllabus of courses. In fact, the effect of the experience

in both syllabi proved to be effective. The reported results show

that students do not know reengineering as a software

maintenance technique although their satisfaction with the

experience was high or very high (62%) or medium (30%). The

key learned lessons are that students recognized the usage of

reengineering tools as very convenient for their performance as

future practitioners and the need to devote additional time in

classroom to learn such tools.

Keywords—Software Engineering, Maintenance, Reengineering,

Practical Experience, Evaluation

I. INTRODUCTION

Software maintenance is the stage of software development
that requires more effort and resources [10]. In fact, the
maintenance effort is between 70 and 80% while only the 20-
30% of time is spent on other development stages during the
software life cycle [8, 13]. Software maintenance is a key
activity to correct, adapt, migrate or improve existing software
systems [7]. Software maintenance firstly is on the side of the
users’ satisfaction and secondly extends the lifespan of
software systems, which implies a higher return of investment.

There are many approaches and techniques in the literature
for carrying out software maintenance. One of the most
widespread techniques is software reengineering [1], which has
been successfully applied in last two decades. Reengineering
advocates obtaining improved versions of an existing system
by reusing existing software artifacts in order to preserve the
business rules embedded in the system under maintenance [12].
Reengineering process consists of three stages [4]: (i) reverse
engineering, which analyses existing software and identifies
the different components and their interrelationships to build
one representations of the system at a higher degree of
abstraction; (ii) restructuring, which takes the previous
system’s abstract representation and transforms it into an

enhanced representation of the system at the same abstraction
level by preserving the external behavior; and (iii) forward
engineering, generates physical implementations of the target
system at a low abstraction level from the restructured system.

This approach is also known as the horseshoe reengineering
model [9] due to the abstraction degree is modified throughout
the three stages (see Figure 1).

Regarding academia, software maintenance is also
perceived as an interesting topic. Indeed, software
maintenance, and particularly reengineering, is included in
well-known international curricula. The sixth chapter of
SWEBOK (Software Engineering Body of Knowledge) [6] is
fully devoted to software maintenance. The Software
Engineering Curriculum proposed by ACM and IEEE [3]
defines an area of knowledge for software evolution with an
estimated duration of 10 hours (2.24% of total time).

Despite the importance of software maintenance in industry
and academy, teaching about software maintenance and
reengineering must deal with two main challenges [5]: (i)
software maintenance is often presented in the academia as an
additional and routine activity outside the scope of software
development process; and (ii) there is no much research
concerning software maintenance and reengineering teaching
in comparison with other software development stages.

ANALYSIS

DESIGN

IMPLEMENTATION

Forward
Engineering

Forward
Engineering

Reverse
Engineering

Reverse
Engineering

REENGINEERING

REENGINEERING

Restructuring

Restructuring

Restructuring

Figure 1. The horseshoe reengineering model.

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1284

This work attempts to address these challenges by
providing a practical teaching experience about software
reengineering within a software engineering degree in a
Spanish university. The experience consisted of teaching a
lesson about software reengineering and maintenance in a
theoretical class as well as a collaborative practical exercise
during two lab sessions. The main objective of this
investigation is to analyze whether the proposed experience is
pedagogic and therefore improve the teaching-learning process
of software reengineering and software maintenance in general.
During the teaching experience the students carried out an
initial evaluation test and a final test as well. Such tests allowed
us to know which topics were easily learned and which were
the most common learning problems presented by the students.
This experience has been replicated during the two last years in
the same university within two different syllabi, since a new
plan was implemented in the last year. Hence, comparative
results concerning both years are also presented.

After analyzing obtained results, the teaching-learning
process proved to be efficient since marks that students
obtained in the post-questionnaire improved regarding their
initial evaluations. Various learned lessons were additionally
reported. Firstly, the most common problem for students was
the integration of new functionalities in the target systems
during software reengineering. Secondly, the majority of the
students reported a high satisfaction about learning and
managing new software applications for supporting
reengineering.

The remaining of the paper is organized as follows: Section
2 summarizes the main international curricula on software
engineering concerning reengineering. Section 3 presents in
detail the teaching experience. Section 4 analyses the results
obtained in the practical experience. Finally, Section 5 provides
the conclusions and learned lessons of this work.

II. REENGINEERING IN INTERNATIONAL CURRICULA

Currently, there are several international curricula focused
on the profession of Software Engineering such as SWEBOK,
Computing Curricula, ICF-2000 (IFIP / UNESCO) or ISCC,
among others. However, SWEBOK [6] and ACM / IEEE SE
[3] are probably the most relevant ones. In this section it is
presented how these curricula address the maintenance process
and more specifically, reengineering as an essential method to
support this process.

SWEBOOK (Software Engineering Body of Knowledge),
which was designed for the accreditation of university curricula
and certification of professionals, identifies a core body of
knowledge that characterizes the discipline of Software
Engineering. SWEBOK is divided into 10 knowledge areas,
among which is included the Software Maintenance Area.
Regarding maintenance, SWEBOK considers foundations, key
concepts, and the processes and techniques for maintenance
(see Figure 2). The software maintenance area in the SWEBOK
curriculum includes three techniques for software maintenance
(see right side of Figure 2). Reengineering is one of these three
techniques. Anyway, the remaining techniques (program
comprehension and reverse engineering) are covered by the
reengineering concept.

The Computing Curricula of ACM / IEEE-CS provides the
guidance for curriculum development of careers of computer
science and engineering. The Computer Curricula is comprised
of several parts: a master volume and additional volumes for
specific disciplines. One of these volumes, the SE 2004 [3], is
particularly focused on the description of software engineering
curriculum. It is important to point out that (from all areas of
knowledge or topics of interest that cut across all disciplines
covered by the Computing Curricula) the discipline of software
engineering described in SE 2004 is the one that estimates
more effort to address the Software Maintenance area.

The SE 2004 is divided into twelve knowledge units. One
of these knowledge units is directly related to the maintenance
and reengineering: the unit SE7 entitled Software Evolution
(see Figure 3). This knowledge unit is divided into two parts:
evolution process and evolution activities. The Software
Evolution unit includes, among other, software maintenance,
the characteristics of software maintenance, reengineering,
legacy systems and reuse of software. SE 2004 additionally
specifies the certain time that should be dedicated in each unit.
In case of software evolution, 14 hours have to be dedicated.
Together with desirable time, SE 2004 specifies the attributes
using the Bloom’s taxonomy [2] refereeing to knowledge (k),
comprehension (c), and application (a); as well as the topic's
relevance to the core, which is represented as essential (E),
desirable (D), or optional (O).

Figure 2. Knowledge areas of software maintenance from SWEBOK [6].

Figure 3. Knowledge unit for software evolution from ACM / IEEE SE [3].

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1285

The two mentioned curricula show how the software
maintenance process receives as much importance as other
processes studied in Software Engineering. Specifically, both
curricula consider re-engineering as the main method to
support software maintenance. However, when checking
current computer curriculum in some European universities it
can be seen that in most cases: (i) maintenance is briefly
theoretically studied, and (ii) reengineering is hardly ever
studied, and may even not be mentioned in the majority of
related units.

III. TEACHING EXPERIENCE

This section explains in detail the teaching experience
conducted during two last years for assessing the teaching-
learning process concerning a reengineering practice. Firstly,
the context in which the experience was conducted is
introduced. Secondly, the proposed reengineering practice is
depicted by providing the teaching resources.

A. Context

The teaching experience was conducted in last two years
(2011 and 2012) with the particularity that a new syllabus was
introduced for the computer science degree in the last year. In
fact, one of the goals established for this experience was the
comparison of results obtained in both plans, since these plans
entails some important differences such as the course in which
the experience was carried out, or the related subjects
previously treated by students. The reengineering teaching
experience was conducted in the first semester of the course
2011/2012 and 2012/2013 in the Software Engineering subject.

2011 syllabus. In 2011 plan, this subject was taught in the
Computer Science BSc with specialization in Management
(ITIG) and Systems (ITIS) in the Computer Science Faculty
(Escuela Superior de Informática) in Ciudad Real at University
of Castilla-La Mancha. In 2011 plan, this subject was taught in
an annual term (first and second semester) in the third course
(over a total of three years) of the degree and it implies 10
ECTS (European Credit Transfer and Accumulation System).
80 students were enrolled in the subject during that year: 34
students in ITIG and 46 students in ITIS.

2012 syllabus. A new syllabus was introduced in 2012 for
the Computer Science BSc at University of Castilla-La
Mancha. In 2012 plan, the Software Engineering subject was
taught in a half year term (in the first semester) in the second
course of four ones in total. This subject implies 6 ECTS. 96
students were enrolled in the subject during 2012.

B. Practice Description

The teaching experience (see Figure 4) first consisted of a
theoretical seminar in classroom during one hour and in which
the basis and fundaments of reengineering as well as its
relationship and contribution to the software engineering field
in general and maintenance field in particular were tough. The
practical exercise was then carried out in laboratory. The
practice took two hours in which the reengineering tools to be
used were explained in approximately one hour. After that, the
students applied them to solve a practical exercise.

Teaching lesson
(1 h.)

Pre-
questionnaire

Lecture
session

Lab practice
(2 h.)

Practical
Exercise

Post-
questionnaire

Satisfaction
Survey

(by moodle)

Figure 4. Overview of the teaching experience.

Figure 5. UML class diagram for the existing informatin system.

The practice in laboratory consisted of the conduction of a
reengineering process to modify an existing system. The
artefact provided to students was a set of five java executable
files (.class), without related documentation. The existing
system concerns the bank domain, which contains 5 classes
(see Figure 5). Firstly, there is an inheritance tree for
specifying CreditCard and DebitCard from the super class
Card, which represent a bank card for doing transactions and
payments in shops (class Transaction). Each card is associated
with a bank account (class Account), which consider a
customer and a set of transactions.

The goal of the practice was to build an improved version
of the system which had to fulfil new requirements and to
include related documentation (see Appendix IV). Since the
existing system was written in Java, the mandatory
requirements for carrying out the exercise were Java as
programming language and UML as modelling language.

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1286

In order to collect the necessary feedback, three
questionnaires were designed to evaluate this experience (see
Figure 4):

Pre-Questionnaire, which was filled in by the students
before the theoretical seminar and its goal was to assess the
previous knowledge of the students about reengineering in
relation to the previous subjects passed by them. The
questionnaire consisted of multiple choice questions and was
composed of three theoretical and two practical questions (see
Appendix I).

Post-Questionnaire, which was filled on at the end of the
practice and included multiple choice questions about
Reengineering to assess the acquired knowledge by students as
a consequence of the experience. This questionnaire was
answered via Moodle platform and included five similar
theoretical questions about software maintenance and
reengineering as well as the two practical cases of the Pre-
Questionnaire in order to have a comparison of results obtained
in these cases (see Appendix II).

Final Survey, in which the opinions of students about the
experience were collected by using the Moodle platform. The
main aim was to assess whether the students agreed about to
include this experience as a regular content or unit in the
software engineering subject in future years as well as their
opinion concerning positive and negative aspects of the
experience.

The execution of the teaching experience took place
without problems in both years. 68 students participated (30
ITIG, 36 ITIS) in the 2011 experience, which means a
participation of 85% of enrolled students. 70 students in total
attended to the 2012 experience, which means a participation
of 73% of enrolled students. The delivered documentation and
software code provided by students was completed in all the
cases, thus it was not necessary to discard any of them. The
obtained results are analysed in the following section.

IV. RESULTS

This section presents a quantitative and qualitative analysis

of the obtained results. Section A analyses results of initial

evaluation. Section B discuses results obtained in the practice

of laboratory. Section C examines results obtained in the final

evaluation by comparing such results with the initial

evaluation ones. Section D analyzes how related subjects

passed by students affect to the obtained results. Section E

focuses on the comparison of results obtained in two different

years. Finally, Section E shows the opinion of students

regarding the teaching experience.

A. Initial Evaluation

Regarding conceptual questions of pre-questionnaire (see
Appendix I) about software maintenance and reengineering
fundaments and basis, it was observed that over 70% and 76%
of students (respectively from 2011 and 2012 experience) had a
slight or well-formed idea about software maintenance.
However, only 22% and 13% of students had an idea about
how reengineering works (respectively based on the second
question of pre-questionnaire of 2011 and 2012 experience).

Furthermore, concerning the third question so that students
establish relationships between software maintenance and
reengineering; only 18% and 17% of students (respectively
from 2011 and 2012 experience) were able to relate software
maintenance and reengineering. These results clearly indicate
students do not know that reengineering is as a technique of
software maintenance, which justifies the teaching experience
on this area.

The comparison between results collected from 2011 and
2012 experience shows that 2012 students have a clearer idea
of software maintenance than 2011 ones, while 2011 students
proved to have a better preliminary comprehension of
reengineering than 2012 ones.

Concerning practical cases, students obtained good results
taking into account they have never learn reengineering. 2011
students achieve a success ratio (i.e., the percentage of students
that choose the right answer) of 62% and 66% for the two case
studies respectively (see appendix III). 2012 students even
reach a higher success ratio with 71% and 86% for the two
practical cases. 2011 and 2012 results have in common that
success ratio obtained in the second case was higher than the
results obtained in the first case.

B. Lab Practical Exercise

Table I shows the marks obtained for each student group in
both experiences (2011 and 2012). Each group was formed
with three to five students. Table I also shows the evaluation
criteria that were not fulfilled, which are later depicted in Table
II. The mean of marks obtained in 2011 was 8.18 with a
standard deviation of 0.9, while the 2012 experience provided a
mean of 8.45 with a standard deviation of 1.02. These marks
indicate that students in both years did not find many
difficulties for addressing the proposed practice. Despite of this
fact, it was realized a set of common mistakes that students
systematically repeated which are described as follows.

Table II provides the description of evaluation criteria that
were repeatedly failed as well as its frequency during the
experience. On the one hand, the most common error consisted
of the wrong integrations of the necessary, new Customer class
with the remaining classes of the system during the
restructuring stage. It was due to (C2) the absence of the
necessary dependencies with other classes (which was repeated
by the 93% and 100% of the 2011 and 2012 students
respectively); and (C3) owing to the absence of associations,
i.e., the types of attributes representing customers were not
modified appropriately (which was made by the 41% and 43%
of the 2011 and 2012 students).

On the other hand, with a lower repetition, compilation and
source code mistakes were also detected as common mistakes
(C5), which affected in most cases to the absence or wrong
launcher class that students had to implement (C3). In fact, the
launcher class did not work in the 44% and 49% of the 2011
and 2012 students. Finally, 31% and 34% of 2011 and 2012
students respectively contextualized in a wrong way some of
the reengineering stages during the steps made during the
practice (see C4 in Table II).

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1287

TABLE I. MARKS BY STUDENT GROUPS OBTAINED IN THE PRACTICAL EXERCISE

Year Group
Marks

[0-10]

Common Mistakes

C1 C2 C3 C4 C5

2
0
1
1

1 9.0 ♦

2 8.0 ♦ ♦

3 9.0 ♦

4 8.0 ♦ ♦ ♦

5 7.5 ♦ ♦ ♦

6 8.5 ♦ ♦

7 9.0 ♦

8 8.0 ♦ ♦

9 9.0 ♦

10 7.5 ♦ ♦ ♦

11 8.5 ♦ ♦

12 7.5 ♦ ♦ ♦

13 6.0 ♦ ♦ ♦ ♦ ♦

14 9.0 ♦

2
0
1
2

1 9.5 ♦

2 8.5 ♦ ♦ ♦

3 9.5 ♦

4 9.0 ♦ ♦

5 9.0 ♦ ♦

6 7.5 ♦ ♦ ♦ ♦

7 7.5 ♦ ♦ ♦ ♦

8 9.0 ♦ ♦

9 8.0 ♦ ♦ ♦ ♦

10 6.0 ♦ ♦ ♦

11 6.5 ♦ ♦ ♦ ♦

12 9.5 ♦

13 8.5 ♦

14 7.5 ♦ ♦ ♦ ♦

15 9.0 ♦

16 9.0 ♦

17 9.5 ♦

18 9.5 ♦

19 8.5 ♦ ♦ ♦

20 8.0 ♦ ♦ ♦ ♦

TABLE II. MISTAKES AND THEIR FREQUENCIES IN THE PRACTICAL EXERCISE

ID Evaluation criteria
Percentage

2011 2012

C1
The Customer class is not well integrated
(loosing associations)

41.2% 42.9%

C2
There is a lack of dependencies with the new

Customer class
92.6% 100.0%

C3
The Launcher class does not work to test the

system.
44.1% 48.6%

C4
Misleading documentation regarding
reengineering stages.

30.9% 34.3%

C5 Source code and/or compilation mistakes 7.4% 8.6%

The comparison between results collected from 2011 and
2012 experience shows that 2012 students obtained worse
results than 2011 students. This contrasts with the results
obtained in the pre-questionnaire with theoretical concepts, in
which 2012 students obtained better results than 2011 ones.

Figure 6. Box plot for reengineering understanding comparison.

C. Post Evaluation

The results retrieved at the end of the experience by means
of the post questionnaire were compared with the initial
evaluation. The comparison was made by analyzing the marks
obtained from the evaluation of three first questions of the pre-
questionnaire (see Appendix I) and the first block composed of
four questions of true/false type of post-questionnaire (see
Appendix II). This comparison shows that the students’
perception about reengineering significantly changed in both
years. In 2011, the 70% of students made a right definition of
reengineering in post-questionnaire (a mark greater or equal to
5), which was an increase of 66% from the initial 4%. In the
2012 experience, the initial comprehension of 15% increased
68%, since the final comprehension about reengineering in
post-questionnaire was 83% (see Figure 6). Despite the final
understanding was better in 2012 than in 2011, the increase of
understanding was 66% and 68% in both experiences. As a
result, the teaching-learning experience was equally effective
in both years.

Additionally, both the pre-questionnaire as the post-
questionnaire were qualified with a mark between 0 and 10 for
each student. It was observed that the score obtained from the
post-questionnaire in 2011 was 7.8 on average, while the mean
of marks obtained in pre-questionnaire was only 2.2. The
marks of 2012 students followed a similar trend with a mean of
7.9 and 2.0 for the post- and pre-questionnaire respectively.
Figure 7 shows the distribution of marks obtained from the two
questionnaires in both years. The marks in all the cases
followed a normal distribution with the mentioned means and
standard deviations of 1.4 for post-questionnaires of both years
and 1.5 and 1.9 for pre-questionnaires of 2011 and 2012. These
results demonstrate that the proposed reengineering teaching
experience increased the knowledge about reengineering and
software maintenance of students. The influence of the
teaching-learning process additionally was uniform, since the
distribution of marks in the post-questionnaire had standard
deviations less than standard deviations obtained after pre-
questionnaires.

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1288

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

2011 and 2012 Pre- and Post- Questionnaire

2011 Pre 2012 Pre 2011 Post 2012 Post

Figure 7. Distribution of marks obtained in the initial and last evaluation

Moreover, the difference results obtained in the two
practical case studies made in both questionnaires was
assessed. For this purpose, a Student’s test was carried out with
the results of both questionnaires for each case (see Table III).
In 2011, there is a mean difference between the initial and final
evaluation with a significance degree of 99% in both practical
cases. The mean difference is the same in the two case studies
(-0.212). The negative difference means that the average score
obtained from the post-questionnaire was greater than the score
at the beginning of the experience in 2011. In fact, the effect
size values demonstrate that the students improved more in the
second case study (-0.522) than in the first one (-0.496).

In 2012 experience, there is a significant mean difference
only in the first practical case with a significance degree of
99% (see Table III). In this case, there is a mean difference of -
0.185 with an effect size of -0.468. These results are very
similar to 2011 results. However, the second practical case in
2012 did not report a significant difference. Although the score
obtained in post-questionnaire was greater than the pre-
questionnaire score, there is no a significance value above
95%. As a result, in this case nothing can be stated about the
improvement of results after the reengineering teaching
experience.

TABLE III. COMPARISON OF RESULTS OBTAINED IN PRACTICAL CASES.

Mean

Difference

Standard

Deviation.

T-

Student

Effect

Size
Significance

2
0
1
1

Practical

Case I
-0.212 0.57 -3.03 -0.496 0.004

Practical

Case II
-0.212 0.41 -4.18 -0.522 0.000

2
0
1
2

Practical

Case I
-0.185 0.46 -3.21 -0.468 0.002

Practical

Case II
-0.077 0.37 -1.69 -0.258 0.096

D. Effect of related subjects

Another important aspect that has been assessed is the
effect of related subject to the teaching-learning process in this
experience. In order to quantify this effect, related subjects
passed by each student were collected together with the score
and marks obtained in each activity (i.e., pre- and post-
questionnaire and the practical exercise).

The related subjects under study were (i) Fundaments of
programming; (ii) Data structures; (iii) Advanced
programming; and (iv) Databases. Since the syllabus was
changed in 2012, the nature and duration of these subjects was
different (see Table IV). Hence, different effects in results are
expected.

The analysis of the effect of related subjects was carried out
by applying the anova statistical test. The anova test analyzes
the variance of various sub-samples with respect to a factor.
Thus, the null hypothesis is H0: μ1 = μ2 = μn, while the
alternative hypothesis means that there is a significant
difference between the means of sub-samples, i.e., H1: μ1 μ2
μn. In this case, various anova tests were carried out by
choosing as factor if a certain related subject was (or was not)
passed. Also, different anova test were conducted by each
score or mark obtained in all the different activities in both
years.

After applying the anova test, the null hypotheses of all the
tests cannot be rejected since the significance values were
greater than 0.05. As a consequence, related subjects and its
different nature do not affect to the results obtained in both
experiences. This means that the different results obtained in
both years could be explained due to the random effect.

Despite random effect, Table V provides all the cases in
which students who passed a particular subject obtained better
results in a certain activity. Table V shows that 2011 students
who had passed most related subjects obtained better results in
the practical exercise than students who had not passed them.
Another interesting insight is that, at the contrary 2011, 2012
students who had passed most related subjects did not obtained
necessarily better results. However, these students obtained
better results in practical cases of post-questionnaires of 2012
(see Table V).

TABLE IV. NATURE OF RELATED SUBJECTS

Subjects

2011 2012

Course
ECTS

credits
Duration Course

ECTS

credits
Duration

Fundaments of
programming

1st 13 Annual 1st 6 1st Sem.

Data structures 2nd 10 Annual 2nd 6 1st Sem.

Advanced

Programming
2nd 7.5 2nd Sem. 1st 6 2nd Sem.

Databases 3rd 7 Annual 2nd 6 2nd Sem.

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1289

TABLE V. EFFECT OF RELATED SUBJECTS IN OBTAINED RESULTS

Year

Score / Marks
 F

u
n

d
a
m

en
ts

 o
f

P
ro

g
ra

m
m

in
g

D
a
ta

 S
tr

u
ct

u
re

s

A
d

v
a

n
ce

d

P
ro

g
ra

m
m

in
g

D
a
ta

b
a

se
s

2011

Pre

Questionnaire

Case I

Case II

Post

Questionnaire

Case I

Case II

Practical Exercise

2012

Pre

Questionnaire

Case I

Case II

Post

Questionnaire

Case I

Case II

Practical Exercise

TABLE VI. ANOVA TEST RESULTS FOR THE EXPERIENCE YEAR (2011/2012)

Score / Marks

Quadratic

Mean

F-

value

Effect

Size

p-

value

Pre

Questionnaire 1.472 0.511 0.122 0.476

Case I 0.322 1.444 -0.190 0.232

Case II 1.317 7.526 -0.477 0.007

Post

Questionnaire 0.002 0.001 0.005 0.975

Case I 0.141 1.229 -0.177 0.270

Case II 0.079 0.910 -0.170 0.342

Practical Exercise 1.368 1.971 -0.241 0.163

E. Comparison based on Two-Year Experience

Besides of previous analyses, a comparison between results
obtained in both experiences was conducted. An anova test was
carried out for assessing the effect of the experience year (2011
and 2012). Table VI provides results of the anova test, which
shows that only the second practical case of the pre-
questionnaire is affected by the year with a significance degree
of 95%. In this case, since the effect size is negative (-0.477)
the results obtained in the second practical case were better in
2012 than 2011.

In remaining cases, the null hypotheses cannot be rejected,
i.e., different results obtained in both years are due to the
random effect. Anyway, Table VI provides the effect size
values, which quantify the difference between results. Positive
values indicate 2011 results were better than 2012 and vice
versa.

0%

10%

20%

30%

40%

50%

60%

Very Low Low Medium High Very High

a) Satisfaction degree with the reengineering lesson

2011 2012

0%

10%

20%

30%

40%

50%

60%

No As theoretical
Lesson

As practical
Lesson

Both,
theoretical

and practical

b) Do you include reengineering lesson in future years?

2011 2012

Figure 8. Results of the satisfaction survey

F. Satisfaction Survey

At the end of teaching experience, a feedback survey was
distributed via the corporative Moodle-based system in order to
obtain the students’ opinion about the teaching experience.
When it was asked if they would include the maintenance and
reengineering in the program for future years, between 49%
and 51% of 2012 and 2011 students indicated that they will
include both theoretical as practical lesson. Furthermore,
between 37% and 45% would include software maintenance
and reengineering at least in practical lessons (see Figure 8 a).

Concerning the question to know their satisfaction (see
Figure 8 b), it was quantified with a scale between 1 and 5 (i.e.,
very low, low, medium, high and very high). In 2011
experience, 60% of students had a high satisfaction (4), 35% a
medium satisfaction (3), 2% very high (5). Whilst, the 2012
survey reported that 56% of students had a high satisfaction
(4), 30% a medium satisfaction (3), 5% very high (5).
Satisfaction of 2012 students was less concentrated among
medium and high values than 2011 results. Nevertheless, there
were more students with a low and very high satisfaction.

This questionnaire also asked for the positive and negative
points of this experience. Most students provided as good
points that: (i) they learned how to reuse code to avoid green-
field software developments in every case; and (ii) they
positively evaluated the knowledge and usage of new
reengineering-based tools, especially such tools related to the

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1290

reverse engineering stage as de-compilers, which they had
never used.

Finally, the students almost unanimously stated as a
negative aspect the lack of time during the practice of
laboratory to end the practical exercise as well as the bit time
dedicated for the explanation of reengineering tools to be used
in laboratory. The lack of time can be partially explained by the
time spent on the assessment. Cost of assessment is often
stolen from teaching, and therefore also from learning [11].

V. CONCLUSIONS

Teaching in software engineering must be addressed to
enable students to develop their future work in current
professional environment, which are demanding tasks and
skills that are sometimes not covered within current academia
curricula. A vast number of software engineers are nowadays
working in software maintenance tasks by applying software
reengineering. Unfortunately, reengineering often receive a bit
attention in terms of teaching.

This paper presents a teaching experience conducted within
a software engineering subject of a computer science degree.
As a result, initial evidences showed: (1) a lack of previous
knowledge by students about software maintenance and
reengineering, and (2) how students can deal with this gap by a
practice specifically designed to acquire the necessary, basic
training about software maintenance and the application of
software reengineering. The positive results of this two-year
experience will be helpful to introduce the special issues
related to software maintenance and reengineering into the
subject of the computer science degree.

Among the lessons learned, which could be applied to
future repetitions of the teaching experience, we included:

1. During the development of the practice in the
laboratory, the major challenge for students was the
introduction of new functionalities in the target system.
The hardest difficulties were regarding the integration
of new functionalities into the new systems during the
restructuring stage.

2. One of the most common faults made by students was
the confusion of reengineering stages, since students
did not demonstrate to have a clear comprehension of
frontiers between reverse engineering, restructuring
and forward engineering. To mitigate this threat, the
explanation of reengineering stages may be extended
in future experiences.

3. During practical exercise, a common bad practice
carried out by most students was that they almost
directly modified and restructured the existing
information system at code level instead of at UML
level.

4. Students identified the lack of time as a handicap to
conclude the practical exercise with better results.
Therefore, new experiences may be carried out with
additional time.

5. Students expressed their approval about the use of new
tools like de-compilers and other reverse engineering
applications to generate UML design models.
Nevertheless, students indicated the necessity of an in-
depth explanation of such tools. An additional lesson
related to these tools could be included in future
teaching experiences.

6. Concerning the two different syllabi in which the
experience was conducted, we learned that
reengineering could be taught at an elementary level in
first courses or could be addressed in depth in last
courses as we tested in 2011 experience. These both
experience have therefore provides us with a better
understanding about how to include reengineering in
the new syllabus.

ACKNOWLEDGMENT

This work was supported by the FPU Spanish Program and

the R&D projects PEGASO/MAGO (TIN2009-13718-C02-

01), MAESTRO (Alarcos Quality Center) and GEODAS-BC

(TIN2012-37493-C03-01).

REFERENCES

[1] Bianchi, A., D. Caivano, V. Marengo, and G. Visaggio, Iterative
Reengineering of Legacy Systems. IEEE Trans. Softw. Eng., 2003.
29(3): p. 225-241.

[2] Bloom, B.S., Taxonomy of educational objectives; the classification of
educational goals. 1956, New York: Longmans, Green.

[3] Computing Curriculum Project, Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering (SE2004).
http://sites.computer.org/ccse/. 2004, IEEE Computer Society & ACM.

[4] Chikofsky, E.J. and J.H. Cross, Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Softw., 1990. 7(1): p. 13-17.

[5] El-Ramly, M., Experience in teaching a software reengineering course,
in Proceedings of the 28th international conference on Software
engineering. 2006, ACM: Shanghai, China. p. 699-702.

[6] IEEE Computer Society, Guide to the Software Engineering Body of
Knowledge (SWEBOK). http://www.computer.org/portal/web/swebok.
2004.

[7] ISO/IEC, ISO/IEC 14764:2006. Software Engineering -- Software Life
Cycle Processes -- Maintenance.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064. 2006,
ISO/IEC.

[8] ISO/IEC, ISO/IEC 12207:2008 - Systems and software engineering --
Software life cycle processes. 2008.

[9] Kazman, R., S.G. Woods, and S.J. Carrière. Requirements for
Integrating Software Architecture and Reengineering Models: CORUM
II. in Proceedings of the Working Conference on Reverse Engineering
(WCRE'98). 1998: IEEE Computer Society.

[10] Lehman, M.M., On understanding laws, evolution, and conservation in
the large-program life cycle. Journal of Systems and Software, 1979. 1:
p. 213-221.

[11] Schagaev, I., E. Bacon, N. Folic, and N. Ioannides, Curriculum Design,
Development and Assessment for Computer Science and Similar
Disciplines.

[12] Sneed, H.M., Planning the Reengineering of Legacy Systems. IEEE
Softw., 1995. 12(1): p. 24-34.

[13] Sneed, H.M., Estimating the Costs of a Reengineering Project.
Proceedings of the 12th Working Conference on Reverse Engineering.
2005: IEEE Computer Society. 111 - 119.

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1291

http://sites.computer.org/ccse/
http://www.computer.org/portal/web/swebok
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064

APPENDIX I. PRE-QUESTIONNAIRE

1. – What do you know or understand about the concept of
‘software maintenance’? When do you think software
maintenance is applied within the software development
lifecycle?

2. – What is software reengineering and in which cases
reengineering should be used?

3. – Which are the relationships between software maintenance
and reengineering?

* The pre-questionnaire is completed with the two practical
cases depicted in Appendix III.

APPENDIX II. POST-QUESTIONNAIRE

1. – Tick with T (True) or F (False) the following statements:
(KEY: T, F, T, F, F, F)

 Reengineering can be used to carry out the
maintenance of information systems.

 Reengineering is a type of engineering applied
through CASE tools.

 Reengineering can obtain improved versions of
information systems.

 Reverse Engineering = Reengineering

 Reengineering = Refactor

 Reengineering = Migration

2. – Indicate which of the following factors are a reason to
launch the maintenance of an existing information system.
(KEY: D)

A. To adapt the system to new technologies, programming
languages, etc.

B. To incorporate new functionalities or meet new
requirements in the system.

C. To solve/mitigate faults and bugs in the system
(maintainability).

D. All factors are right.

3. – Indicate which of the following factors are a reason to
apply reengineering with an existing information system.
(KEY: D)

A. To adapt the system to new technologies, programming
languages, etc.

B. To incorporate new functionalities or meet new

requirements in the system.

C. To solve/mitigate faults and bugs in the system

(maintainability).
D. Any factor between (A) and (B).

E. Any factor between (A), (B) and (C)

4. – Indicate which of the following factors are a reason to
withdraw an information system and develop a new one to
replace it. (KEY: C)

A. Absolutely never. It is always better to make
reengineering

B. When the goal is to obtain high quality systems, which
cannot be obtained through reengineering

C. Preferably never. It is better to make reengineering unless
the cost of a development from scratch is less than to
continue maintaining it.

* The post-questionnaire is completed with the two
practical cases depicted in Appendix III.

APPENDIX III. PRACTICAL CASES.

Below are two case studies. For each case you are the
project manager and are in charge of the decision making of
such software engineering projects. Please, provide the most
appropriate answer in each case:

CASE 1. There is a system built using a structured
development methodology and was written in C. The goal is to
migrate the mentioned system to another system developed
according to the object-oriented paradigm, which have to be
written in Java. (KEY: C)

A. To do nothing. If the system works well, why should we

change it to Java? Migration may imply very high costs.

B. Since the goal is a mandatory requisite, several

programmers with a C and Java expertise should work to

obtain a new system from scratch.

C. Various programmers with a C and Java expertise should

work in the new system. Looking ahead, an object-

oriented development will be easier to modify (due to

inheritance, polymorphism, etc.). The investment made

now will be returned in future cheaper developments.

D. The migration is not necessary. The requirement

specification will be collected through customer

interviews so that a new Java-based system can be built

according a green-field development. The

comprehension of the C code is too much expensive and

is not absolutely necessary.

CASE 2. There is a selling management system that stores all
the customer and product information in plain text files. As a
consequence, the possibility to change the data model is being
evaluated so that a relational database can replace the data
access based on text files. Please, select the most appropriate
choice. (KEY: B)

A. If the existing system is connected to a database, certain

features may not work properly after the incorporation of

the relational database. The creation of a new system

supporting the same functionalities with a relation

database is a better option.

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1292

B. Adding the relational database is the better option, but

the sole change in the system would be the creation of a

database agent to handle the data access to/from the

existing system.

C. If the system works well, why should a relation database

replace the data management based on plain text files? In

the future, when a new version of the existing system is

built the relational database will be incorporated but not

before.

APPENDIX IV. PRACTICAL EXERCISE STATEMENT

For this exercise, a reengineering project should be carried
out in group. Each group will take as input software artifact a
set of executable files (*.class) which belong to an existing,
obsolete information system. The documentation of the system
is missing and its functionality is unknown.

The goal is to obtain an improved version of the system,
together with the documentation based on UML diagrams, in
which the following changes have to be made:

 To add the Customer class (with ID, first and last
name, as well as birthday date). This new class must
be used in all cases in which a String-type variable
represents a customer.

 To develop a Main class to allow operating main
functionalities of the improved system.

The group have to follow and document all the three
reengineering stages (reverse engineering, restructuring, and
forward engineering) to obtain the enhanced information
system.

As a result, the group will upload the following
deliverables:

 A portfolio describing the steps followed in each
reengineering stage by indicating the problems found.
Furthermore, software artifacts obtained in each stage
will be listed.

 Lessons Learned

 UML Diagrams

 Source Code of the improved information system

978-1-4673-6109-5 /13/$31.00 ©2013 IEEE Technische Universität Berlin, Berlin, Germany, March 13-15, 2013
2013 IEEE Global Engineering Education Conference (EDUCON)

Page 1293

	Contribution1428_b
	I. Introduction
	II. Reengineering in International Curricula
	III. Teaching Experience
	A. Context
	B. Practice Description

	IV. Results
	A. Initial Evaluation
	B. Lab Practical Exercise
	C. Post Evaluation
	D. Effect of related subjects
	E. Comparison based on Two-Year Experience
	F. Satisfaction Survey

	V. Conclusions
	Acknowledgment
	References

	Appendix I. Pre-Questionnaire
	Appendix II. Post-Questionnaire
	Appendix III. Practical Cases.
	A. To do nothing. If the system works well, why should we change it to Java? Migration may imply very high costs.
	B. Since the goal is a mandatory requisite, several programmers with a C and Java expertise should work to obtain a new system from scratch.
	C. Various programmers with a C and Java expertise should work in the new system. Looking ahead, an object-oriented development will be easier to modify (due to inheritance, polymorphism, etc.). The investment made now will be returned in future cheap...
	D. The migration is not necessary. The requirement specification will be collected through customer interviews so that a new Java-based system can be built according a green-field development. The comprehension of the C code is too much expensive and ...
	A. If the existing system is connected to a database, certain features may not work properly after the incorporation of the relational database. The creation of a new system supporting the same functionalities with a relation database is a better option.
	B. Adding the relational database is the better option, but the sole change in the system would be the creation of a database agent to handle the data access to/from the existing system.
	C. If the system works well, why should a relation database replace the data management based on plain text files? In the future, when a new version of the existing system is built the relational database will be incorporated but not before.

	Appendix IV. Practical Exercise Statement

